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Abstract
The classical treatment of the Laplace equation by electrical inversion is used
to obtain analytical expressions for the two-dimensional perturbed electrostatic
fields in the presence of a two-phase 2D object. The geometry of the two-
phase object is composed of two overlapping infinitely long cylinders Ca

and Cb of radii a and b, respectively, intersecting at a vertex angle π
2 . The

composite inclusion has the shape resembling a 2D snowman type of object
with a conducting cylinder Ca partly protruded into the dielectric cylinder
Cb with a dielectric constant different from that of the host medium. The
mathematical problem with this inclusion in the electrostatic environment is
formulated in terms of electric potentials (and complex potentials as well) with
the mixed Dirichlet and Neumann boundary conditions at the boundary of the
hybrid object. General expressions for the perturbed electrostatic fields in the
two phases are obtained in a straightforward fashion using Kelvin’s inversion
together with shift and reflection properties of harmonic functions. The general
results are exploited to derive solutions for the hybrid object embedded in (i) a
transverse or a longitudinal uniform field and (ii) a field generated by a dipole.
The dipole coefficients are extracted directly from the exact solutions in a fairly
simple manner. The plots of the normalized polarizabilities (derived from
dipole coefficients) for the imposed uniform field show that the polarizability
in the longitudinal direction is greater or less than the transverse polarizability
depending on the dielectric constants of the composite body and the host
medium. The equipotential plots generated using the exact solutions also
show fascinating field patterns. An interesting connection between the present
solutions and the cyclic groups in abstract algebra is outlined as well in the
appendix.
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1. Introduction

One of the oldest yet most powerful methods of solving boundary value problems in
electrostatics is the method of inversion. This technique, widely known as the classical
method of images, was introduced by Sir William Thomson (later known as Lord Kelvin) in
1845 [1] and has been used successfully to solve a variety of problems in electrostatics [2–5],
in hydrodynamics [6, 7], in elastostatics [8] and even in low-frequency scattering [9, 10]. The
basic idea of the method is to find the fictitious images whose field, combined with the field
generated by the sources, gives rise to some desired boundary condition. For a conductor,
the condition is that the boundary be an equipotential surface. For a dielectric, the boundary
condition is that both the potential and flux be continuous across the surface. An explicit
formula for the image of a charge in a cylindrical conductor or in a dielectric cylinder is well
known, as is the formula for the image of a charge in a spherical conductor. The corresponding
rule for the image of a charge in a non-circular (such as ellipse, for instance) or in a nonspherical
(such as a spheroid, an ellipsoid, etc) geometry becomes somewhat complicated and a simple
formula does not seem to exist.

The essential constituents involved in the classical method of images are

• the image point and its location in a specific geometry;
• suitable image singularities such as charges, dipoles, etc;
• strengths of the image singularities in order to satisfy the desired boundary conditions.

Lord Kelvin used this so-called image principle to solve static problems involving a perfectly
electrically conducting (PEC) grounded sphere. Kelvin’s image principle also has its two-
dimensional counterpart which originally was developed in the context of hydrodynamics
[6] and later extended to electrostatics [11]. The use of the method of images to half-space
electrostatic problems is also well known [3]. In spite of the basic limitation to statics, the
method of inversion is applicable to time-harmonic problems, even at microwave frequencies.
This requires that the region of interest be small enough in wavelengths, what is known as
quasi-static approximation. In this case, the medium parameters are not the static ones but
those taken at the frequency in question, in general, with complex values.

Spheres, cylinders and half-spaces belong to the class of objects for which the image
principle works pretty well in many circumstances. A natural question arises whether the
image principle can be used for body profiles other than spheres, cylinders and half-spaces.
It turns out that for complex body shapes the image principle becomes extremely difficult
to apply and requires quite a lot of guesswork and iterative adjustments in order to obtain
even approximate solutions. Recently [12, 13], it was shown that Kelvin’s inversion, whose
applicability has been long thought restricted to problems involving spheres, could actually
be used to determine exact solution of a variety of problems involving overlapping spheres
and cylinders. This idea is well suited especially for a class of boundary value problems
involving merging (intersecting) surfaces. The surfaces that belong to the category of merging
objects can be modelled, for instance, as two spheres or two infinitely long circular cylinders
(such as considered in this paper) intersecting at a vertex angle. Such surfaces are not
without practical interest. The merging spheres/cylinders under study might for example be
biological cells, metal–insulator composites, rocks, etc. Furthermore, these surfaces depart
from spherical/circular shape and the fact that exact solutions can be found for problems
involving these surfaces make them members of a very exclusive family.

Although the image method works well for conducting overlapping spheres [2, 5, 12] and
cylinders [13], it does not offer sufficient clues for electrostatic problems involving dielectric
intersecting cylinders and spheres. The use of bicylindrical (for merging cylinders) and
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toroidal (for merging spheres) coordinates might be an alternative approach [14, 15] but these
methods do not lend themselves to solutions in a form suitable for further calculations including
the computation of multiparticle interactions. Moreover, in these special coordinate frames,
the boundary conditions result in differential equations rather than the algebraic equations
for the unknown coefficients which are, in general, difficult to deal with [16]. Here, we
make an attempt to solve a basic electrostatic problem for a special nontrivial geometry of
2D snowman type. More specifically, we consider a geometry consisting of a conducting
cylinder partially merged in a dielectric cylinder with a dielectric constant different from
that of the surrounding host medium and construct solutions for the electrostatic potentials
using the classical image principle. It is assumed that the angle of intersection of the two
cylindrical surfaces of the two-phase object is π

2 . This assumption allows the two bounding
circles to share a common inverse point, a requirement that is crucial for the exact analysis.
The exterior boundary value problem for the determination of the electric potentials is solved
analytically and general solutions representing a set of basis functions are provided in terms
of the basic unbounded potential. The solutions are expressed in terms of Green functions for
specific externally imposed fields. The advantage of these forms of solutions is that various
physical quantities of interest can be computed directly. Furthermore, these closed-form
solutions provide results which, beside their significance to electrostatic theory, can be used
to validate numerical codes designed to handle objects of more general shapes [17]. Although
the application of the results are presented in the context of electrostatics, they can indeed be
utilized in thermal conduction problems as well.

The paper is organized as follows. In section 2, the geometry of the two-phase 2D
object and some geometrical relationships relevant in the present contexts are discussed. The
formulation of the problem is done in section 3 both in Cartesian and complex frames. The
solution method, the general solutions in the form of a theorem and solutions to other related
problems in electrostatics all appear in section 4. Some illustrative examples and related
details are given in section 5. The main findings of the present work and other comments are
provided in section 6. Finally, in the appendix, the connection of our results to cyclic groups
in abstract algebra is discussed.

2. Geometry of the heterogeneous two-phase cylindrical object Γ

The two-phase double cylindrical snowman-type geometry of the heterogeneous object is
depicted in figure 1. This geometry is composed of two unequal overlapping infinitely long
circular cylinders Ca and Cb of radii a and b with centres O and O ′, respectively. It is assumed
that the two cylinders intersect orthogonally. The boundary of the heterogeneous body is
denoted by � = Ca ∪ Cb, where Ca is the circle with r = a and Cb is part of the circle where
r ′ = b. The origin of the coordinate system is chosen at the centre of the circle Ca . Since
the circles overlap at a contact angle π/2, the two centres share a common inverse point D. In
the right-angled triangle OAO′, c2 = a2 + b2, where OO′ = c is the centre-to-centre distance
between the two circles. As shown in figure 1, the line AB intersects OO′ at D. Hence,
OD = a2/c and DO′ = b2/c. It follows that

1

(OA)2
+

1

(O′A)2
= 1

(DA)2
, (1)

which is an interesting geometrical relation connecting the radii of the two circles and the
distance between the inverse point D and the vertex A. Let (r, θ), (r ′, θ ′) and (R,�) be the
polar coordinates of any point outside the assembly � with O,O ′ and D as origins, respectively,
and let z, z′ and Z be the corresponding complex positions. The following geometrical relations



6256 D Palaniappan

x-axis

P(x,y)

C
C

O’DO

Θθ

r R r’A

B

IIIII I

a
b

θ   ’

Figure 1. Schematic of a heterogeneous two-phase cylindrical snowman-type object �.

are clear from figure 1:

r2 = r ′2 + 2cr ′ cos θ ′ + c2, (2)

r ′2 = r2 − 2cr cos θ + c2, (3)

R2 = r2 − 2
a2

c
r cos θ +

a4

c2

= r ′2 + 2
b2

c
r ′ cos θ ′ +

b4

c2
. (4)

It follows from (2)–(4) that on the circles Ca and Cb, r
′ and r reduce to

r ′ = c

a
R, on r = a, (5)

r = c

b
R, on r ′ = b. (6)

The useful geometrical relations in the complex plane are

z = z′ + c = Z +
a2

c
, Z = z′ +

b2

c
, c2 = a2 + b2.

Also, we have

c2ZZ̄ =
{

a2z′z̄′, on |z| = a,

b2zz̄, on |z′| = b.

The cylindrical region Cb is filled with a dielectric with a constant different from that of
the host medium and the cylinder Ca is a perfect conductor. The medium exterior to � is
designated as I and the cylindrical regions Cb and Ca as II and III, respectively.

3. Formulation

Consider a stationary two-phase cylindrical geometry � embedded in an arbitrary two-
dimensional electrostatic field. Let k(I) be the dielectric constant of the medium outside



Classical image treatment of a geometry composed of a circular conductor 6257

� and k(II) be the dielectric strength for phase II of the cylinder Cb (figure 1), respectively. The
electric potential outside � is denoted by φ(I)(x, y) and the potential inside the dielectric phase
by φ(II)(x, y). It is well known that the electric potentials satisfy the 2D Laplace equation
which is

∇2φ(I) = 0 = ∇2φ(II), ∇2 = ∂2

∂x2
+

∂2

∂y2
(7)

in the respective phases. The boundary conditions for the electric potentials at the interfaces
are

• zero potential (Dirichlet boundary condition) on the conducting surface Ca;
• continuity of the potential across the dielectric phase Cb;
• continuity of the flux across the dielectric phase Cb.

In mathematical terms, the above conditions read

φ(I) = 0, on r = a, (8)

φ(I)(x, y) = φ(II)(x, y), on r ′ = b, (9)

k(I) ∂φ(I)

∂r ′ = k(II) ∂φ(II)

∂r ′ , on r ′ = b, (10)

φ(II) = 0, on r = a. (11)

On the conducting and dielectric interfaces, respectively. Note that the heterogeneous
inclusion leads to the mixed Dirichlet- and Neumann-type boundary conditions on the two-
phase object of �. The equivalent boundary value problem in terms of complex potentials
W(I)(z) = φ(I) + iψ(I) in the continuous phase and W(II)(z) = φ(II) + iψ(II) in the dielectric
phase, respectively, is as follows:

∂2W(I)

∂z∂z̄
= 0,

∂2W(II)

∂z∂z̄
= 0, (12)

with the boundary conditions

Re(W(I)) = 0, on |z| = a, (13)

Re(W(I)) = Re(W(II)), on |z′| = b, (14)

k(I) Re

[
z′ ∂W(I)

∂z′ + z̄′ ∂W(I)

∂z̄′

]
= k(II) Re

[
z′ ∂W(II)

∂z′ + z̄′ ∂W(II)

∂z̄′

]
, on |z′| = b, (15)

Re(W(II)) = 0, on |z| = a. (16)

Below, we outline a method of solving the above boundary value problem for the
electric/complex potential using the classical method of images.

4. The method and general solutions

Our main goal here is to describe a technique to solve the boundary value problem formulated
in the previous section. Although, the mixed boundary conditions at the interfaces make the
problem somewhat complicated, the idea of classical method of images offers a clue to resolve
the technical difficulties for this nontrivial geometry. Since the images of an unbounded
arbitrary electrostatic field in a conducting and dielectric cylinders are quite well known,
we use them here to obtain the solutions for the underlying boundary value problem for the
geometry �. This is achieved by taking continuous reflections of the images, in the usual



6258 D Palaniappan

manner, and it turns out that this process leads to exact solutions after three steps. The essential
steps involved in the derivation of the general solutions may be described as follows:

Step 1. Reflect a given electrostatic field φ0 on the conducting circular cylinder Ca and call
the perturbation field as φa .

Step 2. Reflect the given electrostatic field φ0 on the dielectric cylinder Cb and call the
perturbation to the given electrostatic field as φ

(I)
b and φ

(II)
b , respectively.

Step 3. Reflect φa obtained in step 1 in cylinder Cb and call the perturbation to φa as φ
(I)
ab and

φ
(II)
ab . Reflecting φ

(I)
b and φ

(II)
b obtained in step 2 in sphere Ca will result in the same potentials,

i.e. φ
(I)
ab = φ

(I)
ba and φ

(II)
ab = φ

(II)
ba .

Therefore, the desired solutions are achieved in this fashion. For convenience, we use the
two-dimensional Cartesian coordinates. Let (x, y), (x ′, y ′) and (X, Y ) denote the Cartesian
coordinates of a point P(x, y) outside � with O,O ′ and D as origins, respectively. The
Cartesian and polar coordinates are related by x = r cos θ and y = r sin θ , with similar
relations for the coordinates with respect to other origins. Since x does not appear explicitly in
the Laplacian operator ∇2, it is form invariant under translation origin along the x-axis. The
following properties are true for equation (7):

(A) Inversion. If φ0(x, y) is a solution of (7), then φ0
(

a2

r2 x, a2

r2 y
)

is also a solution of (7),
where a is the radius of inversion.

(B) Reflection. If φ0(x, y) is a solution of (7), then φ0(−x, y) is also a solution.
(C) Translation of origin. If φ0(x, y) is a solution of (7), then φ0(x + h, y), where h is a

constant, is also a solution.
Note that (B) and (C) are also true for the corresponding operations with the y-coordinate.

Below, the general expressions for the electrostatic fields in the two phases are presented in
the form of a theorem followed by a simple proof. For the sake of completeness, the solutions
in terms of complex variables for the two overlapping circles are also provided.

4.1. The theorem

Theorem 1. Let φ0(x, y) be the electric potential for the two-dimensional electrostatic
field whose singularities (i.e., charges, dipoles, etc) lie outside a heterogeneous composite
snowman-type geometry with the boundary � formed by two generally unequal circular
surfaces intersecting orthogonally. When a composite object � is introduced in this two-
dimensional electrostatic field, the modified electric potentials due to the heterogeneous
cylindrical body in the respective phases I and II become

φ(I)(x, y) = φ0(x, y) − φ0

(
a2

r2
x,

a2

r2
y

)

− 1 − k

1 + k

[
φ0

(
c +

b2

r ′2 x ′,
b2

r ′2 y ′
)

− φ0

(
a2

c
− a2b2

c2R2
X,

a2b2

c2R2
Y

)]
(17)

for phase I and

φ(II)(x, y) = 2k

1 + k

[
φ0(x, y) − φ0

(
a2

r2
x,

a2

r2
y

)]
(18)

for phase II, where k = k(I)

k(II) .

Proof. By virtue of the properties (A), (B) and (C), φ(I) − φ0 (the perturbation terms in
φ(I) in equation (17)) and φ(II) (given by equation (18)) are solutions of equation (7). By a
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Figure 2. Schematic of a dielectric cylinder half buried in a conducting plane.

direct verification, it can be seen that φ(I) and φ(II) satisfy the boundary conditions (8)–(11).
Since the singularities of φ0 lie outside �, the singularities of the perturbation terms in φ(I)

will all lie inside �. Hence, the perturbed electric potential for phase I does not introduce new
singularities outside �. Finally, since φ0(x, y) = o(r) at the origin, the perturbation terms in
(17) are at most of order o

(
1
r

)
for large r. Therefore, the perturbation electric fields in phase I

tend to zero as r → ∞. This completes the proof. �

The expressions given in (17) and (18) represent the most general solutions of the electrostatic
problem formulated in section 3. They can be used to construct solutions for various
externally imposed electric potentials (in section 5, this is done for some representative
cases). Furthermore, they can be used as a set of basis in the method of reflections approach
for computing multiparticle interactions in electrostatic fields involving two-phase 2D objects.

The complex version of the solutions given in theorem 1 is as follows:

W(I)(z) = F(z) − F̄

(
a2

z

)
+

1 − k

1 + k

[
F̄

(
c +

b2

z′

)
− F

(
a2

c
− a2b2

c2Z

)]
(19)

in the continuous phase I and

W(II)(z) = 2k

1 + k

[
F(z) − F̄

(
a2

z

)]
(20)

in the dielectric phase II. The real parts of the solutions (19) and (20) yield the electric
potentials given in (17) and (18) in the respective phases. It may be pointed out that the
imaginary parts of (19) and (20) also provide useful solutions especially in the context of
hydrodynamics, where the current functions (Stokes stream functions) take a specific constant
values (streamlines).

The method of images also yield solutions to other related electrostatic problems some of
which are provided in the following subsection.

4.2. Solutions for related electrostatic problems

• Dielectric cylinder of radius b half buried in a plane y = 0. In this case (see figure 2),
the potentials in the two phases are given by

φ(I)(x, y) = φ0(x, y) − φ0(x,−y) − 1 − k

1 + k

[
φ0

(
b2

r2
x,

b2

r2
y

)
− φ0

(
b2

r2
x,−b2

r2
y

)]
(21)
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Figure 3. Schematic of a conducting cylinder half buried in a conducting plane.
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Figure 4. Schematic of two intersecting conducting planes.

for phase I and

φ(II)(x, y) = 2k

1 + k
[φ0(x, y) − φ0(x,−y)] (22)

for phase II.
• Conducting cylinder of radius b half buried in a plane y = 0. Here we have the electric

potential in phase I alone (figure 3) which is

φ(x, y) = φ0(x, y) − φ0

(
b2

r2
x,

b2

r2
y

)
− φ0(x,−y) + φ0

(
b2

r2
x,−b2

r2
y

)
. (23)

• Two conducting intersecting planes. This is the two-dimensional analogue of the case
considered by Maxwell [2]. The electric potential for this case (figure 4) is given by

φ(x, y) = φ0(x, y) − φ0(x,−y) − φ0(−x, y) + φ0(−x,−y). (24)

In the following section, we use the solutions (17) and (18) presented in theorem 1 to generate
solutions for the heterogeneous inclusion � embedded in specific unbounded potentials.
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5. Illustrative examples

As an illustration of the results (17) and (18), we now derive the explicit solutions for the
two-phase cylindrical object embedded in uniform and dipole fields imposed externally.

5.1. The two-phase cylindrical object � in a uniform field

Consider the composite geometry � consisting of a conducting cylinder of radius a and a
dielectric cylinder of radius b (a hybrid composite geometry) intersecting at an angle π/2
embedded in a uniform field. For the imposed field of strength E along the y-direction, that is
along the transverse direction, the potentials in the two phases calculated using (17) and (18)
are given by

φ(I)(x, y) = Ey

[
1 − a2

r2
− 1 − k

1 + k

(
b2

r ′2 − a2b2

c2R2

)]
(25)

for the region outside � and

φ(II)(x, y) = 2Ey

1 + k

[
1 − a2

r2

]
(26)

for the dielectric phase. The image system in phase I consists of dipoles at the points O,O ′

and D of strengths −Ea2,−E 1−k
1+k

b2 and E 1−k
1+k

a2b2

c2 , respectively. The plots of equipotentials
are shown in figures 5(a)–(d) for two different values of k and radii. It may be noted that
equipotential patterns in the vicinity of � changes significantly as we vary these parameters.

Since we have found the solution in terms of elementary functions, it is now
straightforward to extract the various physical quantities of interest. One of the fundamental
physical quantities in electrostatics is the polarizability which is determined by the dipole
coefficient. From (25) the dipole coefficient αyy is given by

αyy = −E

[
a2 +

1 − k

1 + k

(
b2 − a2b2

c2

)]
. (27)

The dipole coefficient depends on the radii, centre-to-centre distance of the two circles and the
ratio of the two dielectric constants in the respective phases. Figure 6(a) shows the plots of the
dipole coefficient versus the radii ratio b/a for different values of k. As seen from this graph,
the dipole coefficient decreases for increasing values of the radii ratio and the dielectric ratio
as well. For all values of k > 1, the quantity αyy decreases with b/a and becomes negative
for larger values of the radii ratio. This phenomenon may be attributed to the heterogeneity of
the inclusion �.

For the field along the x-direction, that is along the longitudinal direction, the solutions
in the respective regions obtained using (17) and (18) are

φ(I)(x, y) = E

[
x − a2

r2
x − 1 − k

1 + k

((
c +

b2

r ′2 x ′
)

−
(

a2

c
− a2b2

c2r2
1

x1

))]
(28)

for the region outside � and

φ(II)(x, y) = 2E

1 + k

[
x − a2

r2
x

]
(29)

for the dielectric phase. The image system for the potential outside � for the longitudinal
case, as in transverse case, consists of dipoles at the points O,O ′ and D, respectively. In
addition, there are constants in the expressions for the electric potentials which may be due to
the geometrical asymmetry. The plots of equipotentials are shown in figure 7 for two different
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Figure 5. Equipotential plots for the uniform field along the transverse direction for different
values of k and radii with E = 1. (i) k = 0.5: (a) a = 1, b = 3, (b) a = 2, b = 2; (ii) k = 1.5:
(c) a = 1, b = 3, (d) a = 2, b = 2.

values of k and radii. It is evident from the figure that the equipotential patterns in the vicinity
of � change for different values of k and the size of the composite geometry �.

The dipole coefficient extracted from (28) is given by

αxx = −E

[
a2 +

1 − k

1 + k

(
b2 +

a2b2

c2

)]
. (30)

As in the transverse case, the dipole coefficient αxx for the longitudinal field depends on the
geometry of the two-phase object and the ratio of the dielectric constants. The plots of the
dipole coefficient are shown in figure 6(b). It is seen that the features of dipole coefficient αxx

are qualitatively similar to that of αyy .
We can make a comparison between the two dipole coefficients given in (27) and (30).

We first note that αxx > αyy or αxx < αyy according to k < 1 or k > 1 implying that the
longitudinal polarizability is greater or less than the transverse polarizability depending on
the ratio of the dielectric constants. This feature is seen explicitly in figure 6(c) where the
two dipole coefficients are plotted for the sake of comparison. One can thus conclude that the
ratio of the two dielectric constants of the two phases plays a crucial role on the two dipole
coefficients and hence on the corresponding polarizabilities.

5.2. Field induced by a dipole located outside �

Consider a two-dimensional dipole of strength p1 = µ1 placed outside � at (−d, 0) with
its axis parallel to the y-axis, that is, perpendicular to the line of centres (transverse dipole).
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Figure 6. The dipole coefficient for uniform field along the x- and y-directions. Here T ′ is the
normalized dipole coefficient.

Then,

φ0(x, y) = µ1
y1

R3
1

, (31)

where x1 and y1 are the Cartesian coordinates of a point P with D1 (location of the initial
singularity) as origin. The modified potential in phase I, using (17), becomes

φ(I)(x, y) = µ1

[
y1

R3
1

− a2

d2

y2

R3
2

+
1 − k

1 + k

(
b2

(c + d)2

y3

R3
3

− (ab)2

(a2 + cd)2

y4

R3
4

)]
(32)

and the potential in phase II, using (18), is

φ(II)(x, y) = 2kµ1

1 + k

[
y1

R3
1

− a2

d2

y2

R3
2

]
, (33)

where

R2
2 = r2 + 2

a2

d
r cos θ +

a4

d2
,

R2
3 = r2 − 2

a2 + cd

c + d
r cos θ +

(a2 + cd)2

(c + d)2
,

R2
4 = r2 − 2

a2(c + d)

a2 + cd
r cos θ +

a4(c + d)2

(a2 + cd)2
.

(34)

The image system for a transverse dipole located on the conducting cylinder Ca side consists
of dipoles of strengths

p2 = −µ1
a2

d2
, p3 = µ1

(1 − k)b2

(1 + k)(c + d)2
, p4 = −µ1

(1 − k)(ab)2

(1 + k)(a2 + cd)2
, (35)
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Figure 7. Equipotential plots for the uniform field along the longitudinal direction for different
values of k and radii with E = 1. (i) k = 0.5: (a) a = 1, b = 3, (b) a = 2, b = 2; (ii) k = 1.5:
(c) a = 1, b = 3, (d) a = 2, b = 2.

located at

D2 =
(

−a2

d
, 0

)
, D3 =

(
− b2

c + d
, 0

)
, D3 =

(
−a(c + d)

a2 + cd
, 0

)
. (36)

Note that the dipole strengths satisfy the following interesting relation:

1 − k

1 + k

1

p2
+

1

p3
= 1 − k

1 + k

1

p1
+

1

p4
. (37)

The above relation may have a physical significance which is an open question. A similar
relation in the context of overlapping conducting spheres has been observed recently in [18]. It
follows from (35) that the strengths of the image dipoles depend on the geometrical parameters,
ratio of the two dielectric constants and the location of the initial dipole. The potentials in the
two phases for a dipole located on the dielectric cylinder Cb side (that is located at (c + d, 0),
for instance) can be computed in the same manner.

Some representative potential plots for a single transverse dipole field in the presence of
� for a fixed k = k(I)/k(II) are portrayed in figures 8(a)–(f ). The plots show some interesting
patterns for the equipotentials. If the primary dipole (that is, the initial dipole in the absence
of �) is located to the left of the conducting cylinder Ca , the equipotential curves in the
dielectric phase II are straight for b/a > 1 as seen from figure 8(a). This pattern does not
appear to change if the primary dipole is moved closer to the cylinder Ca (see figure 8(b))
keeping b/a > 1. However, for b/a = 1, the equipotentials display rather a different
pattern in phase II as in figure 8(c). Some curves tend to bend towards the conducting
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Figure 8. Equipotential plots for a single dipole field along the transverse direction for different
locations for k = 0.5: (a) a = 1, b = 2, d = a + 3; (b) a = 1, b = 2, d = a + 1;
(c) a = 2, b = 2, d = a + 1; (d) a = 1, b = 2, d = c + 5; (e) a = 1, b = 2, d = c + 3;
(f ) a = 1, b = 2, d = c + 4.

cylinder Ca in a symmetric fashion (symmetrical about the x-axis) and others pass straight
through the dielectric cylinder Cb. It is fair to say that the radii ratio of the conducting and
dielectric regions plays a crucial role in dictating the electric potential in phase II for a fixed k.
Figures 8(d)–(f ) display the equipotential patterns for a dipole located on the dielectric
cylinder Cb side. The features of the equipotential curves in this case are qualitatively similar
to that in figure 8(c). There is always a region in phase II where the lines bend towards the
conductor Ca and this pattern continues to be the same for different radii ratios.

Figure 9 displays some representative equipotential curves generated by two similar
transverse dipoles located on either side of �. When the two dipoles are situated at equidistance
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Figure 9. Equipotential plots for a pair of dipoles along the transverse direction for different
locations with k + 0.5, a = 1, b = 2: (a) d = a + 3, d1 = c + 5; (b) d = a + 2, d1 = c + 4;
(c) d = a + 1, d1 = c + 1; (d) d = a + 1, d1 = c + 5; (e) d = a + 1, d1 = c + 4; (f ) d = a + 4, d1 =
c + 1.

from each cylinder (i.e., d = a + 3, d1 = b + 3), in phase II there is a smooth blending of the
curves emanating from the initial dipoles (see figure 9(a)). The curves closer to the conducting
cylinder bend towards it while the curves away from the conductor tend to become straight.
This pattern remains the same even if the dipoles are moved closer to the cylinders Ca and
Cb with the equidistant constraint as evident from figures 9(b) and 9(c). It is seen from
figures 9(c)–(e) that the equipotential pattern continues to be the same even for non-
equidistance locations of the primary dipoles. However, if the primary dipole on the dielectric
cylinder side is closer to Cb and the other one on the conductor side is farther from Ca , then the
potential pattern changes significantly. In fact, the equipotential curves tend to be stretched
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along the diameter of cylinder Cb and there is no bending of curves towards the conductor
Ca as seen in figure 9(f ). To summarize, in the case of two initial dipoles located on either
side of �, the location of the primary dipole on the dielectric cylinder side has potential
significance on the equipotential patterns.

For the longitudinal dipole located outside �, the image system is found to have additional
constants as explained in the case of longitudinal uniform field in subsection 5.1. The image
system for other externally imposed potentials can be found in similar fashion using the general
solutions (17) and (18).

6. Conclusion

Closed-form analytic solutions for the classical electrostatic problem involving a two-phase
snowman-type geometry � consisting of two overlapping circles intersecting with a vertex
angle π/2 are provided. Utilizing the image method, the general solutions for the electric
potentials in both the phases are given in terms of the unbounded arbitrarily imposed potential
in the form of a theorem followed by a simple proof. A connection of our results to the
cyclic groups in abstract algebra is also provided in the appendix. The solutions to the related
problems in electrostatics are also listed. The general solutions presented here are illustrated
by numerous examples, namely (i) a two-phase object in a uniform field (both longitudinal and
transverse fields) and (ii) a two-phase object embedded in a dipole field generated outside this
geometry. The exact solutions in each case are interpreted in terms of the Green functions. In
the case of uniform field, the dipole coefficients are extracted directly from the exact solutions.
A nondimensional parameter connecting the dielectric constants of the two media is observed
to play a crucial role. The other features including the equipotential plots are narrated in each
example. The potential problems for other imposed fields in the presence of � can be treated
in a similar manner.

We now have access to the solutions of Laplace equation for a new class of geometries.
These solutions may be regarded as a set of basis for the method of reflections approach to
compute many-body interactions in electrostatic and thermal environments. The documented
preliminary results throw some light on development of image methods for non-circular hybrid
geometries. The significant feature of this method, as evident from the present results, is that
it avoids the use of a bicylindrical coordinate frame [14, 15]. It may be worthwhile to mention
that the solutions for the two-dimensional problems have been obtained without recourse to
conformal mapping techniques. This suggests that the results provided here may be utilized
to solve boundary value problems involving complicated intersecting geometries by the use
of möbius transformations. The possible generalizations of our results to pair of intersecting,
dielectric particles in two and three dimensions including scalar transport problems [19] and
bubbly flows [20] will be explored in the future. The connection between our solutions and
abstract algebraic groups provided in the appendix is also clearly of interest.

Finally, the orthogonality condition that the two circles intersect at a vertex angle π
2 makes

it possible to carry out a detailed analysis of the basic electrostatic problem for a nontrivial
geometry. This critical assumption, even though a necessity to make analytical progress,
is a first step towards solving the problem for arbitrary vertex angle, perhaps through some
perturbation or numerical techniques. One of the advantages of this assumption is that it allows
us to avoid the use of bicylindrical coordinates [14] to construct solutions of these problems
which is very tedious and cumbersome. It is hoped that the technique presented here can be
applied for the case when the two circles intersect at a vertex angle π/n, where n is an integer
greater than 2. In such situations, the successive reflections will increase with increasing n,
adding more number of terms to the general expressions for the electrostatic fields. However,
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in the general case of arbitrary vertex contact angles, the problem has to be solved by the use of
complicated functions in bicylindrical coordinates. It would certainly be interesting to analyse
the influence of vertex angle on the electrostatic potentials and related physical quantities in
the general case, but the possibility of solving such a problem still remains a challenge.
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Appendix

There is a close connection between the general solutions given in equations (17) and (18)
and the theory of cyclic groups [21, 22]. To see this connection, we define the operators
La,Lb, Lab = Lba,Mb and Mab in the following way:

La(φ0(x, y)) = −φ0

(
a2

r2
x,

a2

r2
y

)
, (A.1)

Lb(φ0(x, y)) = −1 − k

1 + k
φ0

(
c +

b2

r ′2 x,
b2

r ′2 y ′
)

, (A.2)

Lab(φ0(x, y)) = 1 − k

1 + k
φ0

(
a2

c
− a2b2

c2R2
X,

ab2

c2R2
Y

)
, (A.3)

Mb(φ0(x, y)) = 2k

1 + k
φ0(x, y), (A.4)

Mab(φ0(x, y)) = − 2k

1 + k
φ0

(
a2

r2
x,

a2

r2
y

)
. (A.5)

Clearly, the operators La,Lb and Lab correspond to inversions in the respective circles.
Furthermore, these operators together with Mb and Mab have the following properties:

• L2
a = L2

b = I , where I is the identity operator.
• La(φ0(x, y)), Lb(φ0(x, y)) and Lab(φ0(x, y)) satisfy the same differential equation as φ0

(that is, they satisfy the Laplace equation).
• Mb(φ0(x, y)) and Mab(φ0(x, y)) also satisfy the Laplace equation.
• (I + La + Lb + Lab)φ0(x, y) and (Mb + Mab)φ0(x, y) satisfy the required boundary

conditions on � = Ca ∪ Cb.

Note that operator Lab = LaLb and that LaLb = LbLa which means these two operators
commute. We find that the set G = {I, La, Lb, Lab = Lba} whose elements are operators
occurring in the expressions (17) and (18), forms a group of order 4 (i.e., o(G) = 4) with
composition as the group operation. Observe that G has a cyclic group C of order 2 whose
elements are C = {I, Lab} and so (LaLb)

2 = I . It is interesting that the order of cyclic group
is the same as the vertex angle in the present case. Perhaps this is true even in the general
admissible case although the generalization may require further investigation.
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